
Toward a Best-of-Both-Worlds Binary Disassembler

Stefan Nagy

January 2022

This past winter, I was fortunate to have the opportunity to work for Trail of Bits as a graduate

student intern under the supervision of Peter Goodman and Artem Dinaburg. During my

internship, I developed Dr. Disassembler, a Datalog-driven framework for transparent and

mutable binary disassembly. Though this project is ongoing, this blog post introduces the high-

level vision behind Dr. Disassembler’s design and discusses the key implementation decisions

central to our current prototype.

Introduction

Binary disassembly is surprisingly difficult. Many disassembly tasks (e.g., code/data

disambiguation and function boundary detection) are undecidable and require meticulous

heuristics and algorithms to cover the wide range of real-world binary semantics. An ideal

disassembler has two key properties: (1) transparency, meaning that its underlying logic is

accessible and interpretable, and (2) mutability, meaning that it permits ad hoc interaction and

refinement. Unfortunately, despite the abundance of disassembly tools available today, none

have both transparency and mutability. Most off-the-shelf disassemblers (e.g., objdump,

Dyninst, McSema, and Angr) perform “run-and-done” disassembly, and while their underlying

heuristics and algorithms are indeed open source, even the slightest of changes (e.g., toggling

on a heuristic) requires a complete rebuild of the tool and regeneration of the disassembly. In

contrast, popular commercial disassemblers like IDA Pro and Binary Ninja provide rich

interfaces for user-written plugins, yet these tools are almost entirely proprietary, making it

impossible to fully vet where their core heuristics and algorithms fall short. Thus, reverse

engineers are left to choose between two classes of disassemblers: those full of ambiguity or

those with zero flexibility.

In this blog post, I introduce our vision for a best-of-both-worlds (transparent and mutable)

platform for binary disassembly. Our approach was inspired by recent disassembly tools like

ddisasm and d3re, which use the Soufflé Datalog engine. Dr. Disassembler uses Trail of Bits’ in-

house incremental and differential Datalog engine, Dr. Lojekyll, to specify the disassembly

process. Below, I describe how Dr. Disassembler’s relational view of disassembly is a step

toward transparent, mutable disassembly—streamlining the integration of new heuristics,

algorithms, and retroactive updates—without the need to perform de novo disassembly per

every incremental update.

https://www.usenix.org/system/files/sec20-flores-montoya.pdf
https://bar2021.moyix.net/bar2021-preprint16.pdf
https://souffle-lang.github.io/

Background: Disassembly, Datalog, and Dr. Lojekyll

Disassembly is the process of translating a binary executable from machine code into a

human-interpretable, assembly language representation of the program. In software security,

disassembly forms the backbone of many critical tasks such as binary analysis, static rewriting,

and reverse engineering. At Trail of Bits, disassembly is the crucial first step in our executable-

to-LLVM lifting efforts, such as Remill and McSema.

At a high level, a disassembler begins by first parsing a binary’s logical sections to pinpoint

those that contain executable code. From there, instruction decoding translates machine code

into higher-level instruction semantics. This procedure uses one of two strategies: linear sweep

or recursive descent.

Linear sweep disassemblers (e.g., objdump) perform instruction decoding on every possible

byte, beginning at the very first byte index. However, on variable-length instruction set

architectures like x86, a linear sweep disassembler that naively treats all bytes as instructions

could perform instruction decoding on non-instruction bytes (e.g., inlined jump tables). To

overcome this issue, many modern disassemblers improve their analyses by recovering

metadata (e.g., debugging information) or applying data-driven heuristics (e.g., function entry

patterns).

On the other hand, recursive descent disassemblers (e.g., IDA Pro) follow the observed control

flow to selectively re-initiate linear sweep only on recovered branch target addresses. While

recovering the target addresses of jump tables is generally sound, recovering the targets for

indirect calls is a far more challenging problem, in which common-case soundness has yet to

emerge.

Datalog is one of the more popular members in a class of programming languages known as

logical programming. Compared to imperative programming languages (e.g., Python, Java, C,

and C++), which are structured around a program’s control flow and state, logical programming

(e.g., Prolog and Datalog) is structured solely around logical statements. In our use case of

binary disassembly, a logical statement can be useful for capturing the addresses in a binary

that correspond to plausible function entry points: (1) targets of direct call instructions, (2)

common function prologues, or (3) any function address contained in the symbol table. This use

case is shown below in Dr. Lojekyll syntax:

#query plausible_function(free u64 FuncEA):

 ; Clause 1: targets of direct calls.

 transfer(FromAddr=_, ToAddr=FuncEA, TransferType=CALL_DIRECT).

 ; Clause 2: a common function prologue (push rbp, mov rbp rsp).

 instruction(Addr=FuncEA, Type=PUSH, Op1=RBP, Op2=None),

 instruction(Addr=FuncEA+1, Type=MOV, Op1=RBP, Op2=RSP).

 ; Clause 3: any recovered function symbol.

 symbol(Addr=FuncEA, SymbolType=Function).

https://en.wikipedia.org/wiki/Branch_table

Listing 1: This query retrieves the set of all plausible function entry points. Here, “free” denotes that the

query must find all candidates that match the subsequent clauses. In a bounded clause (e.g., given some

fixed address), the tag “bound” is used instead (see listing 5).

From a logical programming perspective, the code snippet above is interpreted as follows: there

is a plausible function at address FuncEA if a direct call to FuncEA, a known function entry

instruction sequence starting at FuncEA, or a function symbol at FuncEA exists.

At a higher level, logical and functional programming are part of a broader paradigm known as

declarative programming. Unlike imperative languages (e.g., Python, Java, C, and C++),

declarative languages dictate only what the output result should look like. For instance, in the

previous example of retrieving function entry points, our main focus is the end result—the set of

function entry points—and not the step-by-step computation needed to get there. While there is

certainly more to logical and declarative programming than the condensed explanation offered

here, the key advantage of logical programming is its succinct representation of data as

statements.

Here’s where Datalog shines. Suppose that after populating our database of “facts”—sections,

functions, and instructions—we want to make some adjustments. For example, imagine we’re

analyzing a position-independent “hello world” binary with the following disassembly obtained

for function <main>:

 523: 89 04 24 mov %eax,(%esp)

 526: e8 fc ff ff ff call 527 <main+0x17>

 52b: 31 c9 xor %ecx,%ecx

Listing 2: An example of a relocated call target

We also know that the following relocation entries exist:

$ readelf -r helloworld.elf.x86_32.pie

Relocation section '.rel.dyn' at offset 0x308 contains 10 entries:

 Offset Info Type Sym.Value Sym. Name

00000527 00000202 R_386_PC32 00000000 printf@GLIBC_2.0

Relocation section '.rel.plt' at offset 0x358 contains 2 entries:

 Offset Info Type Sym.Value Sym. Name

0000200c 00000207 R_386_JUMP_SLOT 00000000 printf@GLIBC_2.0

Listing 3: Relocation entry information for the example in listing 2

At runtime, the dynamic linker will update the operand of the call at 0x526 to point to

printf@PLT. When the call is taken, printf@PLT then transfers to printf’s Global Offset

Table (GOT) entry, and the execution proceeds to the external printf.

If you’re familiar with IDA Pro or Binary Ninja, you’ll recognize that both tools adjust the

relocated calls to point to the external symbols themselves. In the context of binary analysis, this

is useful because it “fixes up” the otherwise opaque calls whose targets are revealed only

through dynamic linking. In Datalog, we can simply accommodate this with a few lines:

#export indirect_call_to_external(u64 CallEA, u64 ExternEA)

 : instruction(Address=CallEA, Type=CALL_INDIRECT, Op1=AddrOfTargetEA, _)

 , relocation(Address=AddrOfTargetEA, ExternalAddress=ExternEA)

 , instruction(Address=ExternEA, _, _, _).

Listing 4: This exported message rewrites the call to skip its intermediary Procedure Linkage Table (PLT)

entry. Here, “#export” denotes that the message will alter some fact(s) in the Datalog database.

Voila! Our representation of the indirect call no longer requires the intermediary redirection

through the PLT. As a bonus, we can maintain a relationship table to map every call of this type

to its targets. With this example in mind, we envision many possibilities in which complex binary

semantics are modelable through relationship tables (e.g., points-to analysis, branch target

analysis, etc.) to make binary analysis more streamlined and human-interpretable.

Dr. Lojekyll is Trail of Bits’ new Datalog compiler and execution engine and the foundation on

which Dr. Disassembler is built. It adopts a publish/subscribe model, in which Dr. Lojekyll-

compiled programs “subscribe” to messages (e.g., there exists an instruction at address X).

When messages are received, the program may then introduce new messages (e.g., there

exists a fall-through branch between instructions A and B) or remove previous ones. Compiled

programs may also publish messages to external parties (e.g., an independent server), which

may then “query” data relationships from the Datalog side.

Dr. Lojekyll’s publish/subscribe model is well suited for tasks in which “undo”-like features are

required. In binary disassembly, this opens up many possibilities in human-in-the-loop binary

analysis and alterations (think Compiler Explorer but for binaries). At the time of writing, Dr.

Lojekyll supports the compilation of Datalog into Python programs and has emerging support for

C++.

Introducing Dr. Disassembler

Conventional “run-and-done” disassemblers perform their analyses on the fly, confining them to

whatever results—even erroneous ones—are obtained from the outset. Instead, Datalog

enables us to move all analysis to post-disassembly, thus streamlining the integration of plug-

and-play refinements and retroactive updates. And with its painless syntax, Datalog easily

represents one of the most powerful and expressive platforms for user-written disassembly

plugins and extensions. We implement our vision of transparent and mutable disassembly as a

prototype tool, Dr. Disassembler. While Dr. Disassembler can theoretically use any Datalog

engine (e.g., DDLog), we currently use Trail of Bits’ own Dr. Lojekyll. The implementation of Dr.

Disassembler discussed in this blog post uses Dr. Lojekyll’s Python API. However, at the time of

writing, we have since begun developing a C++-based implementation due to Python’s many

performance limitations. Here, I introduce the high-level design behind our initial (and

forthcoming) implementations of Dr. Disassembler.

Figure 1: Dr. Disassembler’s high-level architecture

Disassembly Procedure

Dr. Disassembler’s disassembly workflow consists of three components: (1) parsing, (2)

decoding, and (3) post-processing. In parsing, we scan the binary’s sections to pinpoint those

that contain instructions, along with any recoverable metadata (e.g., entry points, symbols, and

imported/exported/local functions). For every identified code section, we begin decoding its

bytes as instructions. Our instruction decoding process maps each instruction to two key fields:

its type (e.g., call, jump, return, and everything else) and its outgoing edges.

Recovering Control Flow

An advantage of using Datalog is the ability to express complex program semantics as a series

of simple, recursive relationships. Yet, when handling control flow, a purely recursive approach

often breaks certain analyses like function boundary detection: recursive analysis will follow the

control flow to each instruction’s targets and resume the analysis from there. But, unlike calls,

jumps are not “returning” instructions; so for inter-procedural jumps, the function will not be re-

entered, thus causing the disassembler to miss the remaining instructions in the function

containing the jump instruction.

To unify recursive and linear descent disassembly approaches, we developed the concept of

non-control-flow successor instructions: for any unconditionally transferring jump or return

instruction, we record an artificial fall-through edge from the instruction to the next sequential

instruction. Though this edge has no bearing on the actual program, it effectively encodes the

logical “next” instruction, thus unifying our linear and recursive analyses. These non-control-flow

successor edges are the linchpin of our recursive analyses, like instruction-grouping and

function boundary detection.

Post-Processing

At each step of parsing and decoding, we publish any interesting objects that we’ve found to our

Dr. Lojekyll database. These core objects—symbols, sections, functions, instructions, and

transfers—form the building blocks of our heuristic and recursive analyses. Our fundamental

approach behind Dr. Disassembler is to “engulf” as much disassembly information as possible,

regardless of correctness, and to refine everything afterward on the Datalog side. Because we

consider every piece of information to be plausibly correct, we can retroactively update our

disassembly when any new information is observed; and unlike conventional run-and-done

tools, this does not require a de novo re-disassembly.

Example Exports and Queries

Dr. Disassembler streamlines binary analysis by focusing on disassembly artifacts themselves

rather than the myriad steps needed to obtain them. To showcase some of Dr. Disassembler’s

many capabilities, this section highlights several implementation examples of rigorous binary

analysis tasks facilitated by two of Dr. Disassembler’s fundamental constructs: “exports”

(messages that change/remove facts) and “queries” (which retrieve information about facts).

Query: Grouping Instructions into Functions

Given an arbitrary function address FuncEA, this query returns all the addresses of the

instructions contained in that function. Two messages form this query: (1) function(u64

StartEA) and (2) instruction(u64 InsnEA, type Type, bytes Bytes).

#query function_instruction(bound u64 FuncEA, free u64 InsnEA).

; Clause 1: The first instruction of a function is always a member of

; that function.

function_instruction(FuncEA, FuncEA)

 : function(FuncEA)

 , instruction(FuncEA, _, _).

; Clause 2: If there is flow between two instructions in a function,

; then that flow’s destination instruction is also in the function.

function_instruction(FuncEA, NextEA)

 : function_instruction(FuncEA, InsnEA)

 , intraprocdural_transfer(InsnEA, NextEA).

Listing 5: An example Dr. Disassembler query that returns the addresses of the instructions contained in a

function

Export: Instructions Dominating Invalid Instructions

This export returns all the instructions whose control flow leads to invalid instructions (i.e.,

where instruction decoding fails). This heuristic is critical for Dr. Disassembler to filter-out the

many “junk” instruction sequences that inevitably occur when decoding every possible byte

sequence.

As in the previous example, we structure this relationship around two core messages: (1)

instruction and (2) raw_transfer(u64 StartEA, u64 DestEA), the latter of which

contains the unaltered control flow recovered from the binary (i.e., no alterations like the one in

listing 4 are made yet).

#export dominates_invalid_instruction(u64 EA).

; Clause 1: Fall-throughs to non-decodable instructions.

; Any transfer to a non-instruction at `EA` marks `EA`

; as dominating an invalid instruction.

dominates_invalid_instruction(EA)

 : raw_transfer(_, EA, _)

 , !instruction(EA, _, _).

; Clause 2: Recursive case for fall-throughs.

dominates_invalid_instruction(EA)

 : instruction(EA, INSN_NORMAL, _)

 , raw_transfer(EA, FallThroughEA, EDGE_FALL_THROUGH)

 , dominates_invalid_instruction(FallThroughEA).

; Clause 3: Recursive case for direct jumps.

dominates_invalid_instruction(EA)

 : instruction(EA, INSN_DIRECT_JUMP, _)

 , raw_transfer(EA, JmpTargetEA, EDGE_JUMP_TAKEN)

 , dominates_invalid_instruction(JmpTargetEA).

; Clause 4: Recursive case for conditional direct jumps.

dominates_invalid_instruction(EA)

 : instruction(EA, INSN_COND_DIRECT_JUMP, _)

 , raw_transfer(EA, TakenEA, EDGE_JUMP_TAKEN)

 , raw_transfer(EA, NotTakenEA, EDGE_JUMP_NOT_TAKEN)

 , dominates_invalid_instruction(TakenEA)

 , dominates_invalid_instruction(NotTakenEA).

; Clause 5: Recursive case for direct calls.

dominates_invalid_instruction(EA)

 : instruction(EA, INSN_DIRECT_CALL, _)

 , raw_transfer(EA, CalleeEA, EDGE_FUNCTION_CALL)

 , dominates_invalid_instruction(CalleeEA).

Listing 6: An example Dr. Disassembler export that updates the database with all the instructions whose

control flow leads to invalid instructions

Export: Inter-Function Padding

This export returns all the instruction addresses that serve as “padding” between functions (e.g.,

NOPs that do not belong to any function). Here, we use the following messages: (1) function,

(2) section, (3) raw_transfer, and (4) basic_block(u64 BlockEA, u64 InsnEA).

Identifying inter-function padding is a crucial step to refining our function-instruction grouping.

#export inter_function_padding(EA).

; Base case for inter-function padding: An instruction that falls

; through to the beginning of a function, the beginning of a section,

; or the ending of a section, and that doesn't itself belong to any

; known basic block is treated as padding.

inter_function_padding(EA)

 : raw_transfer(EA, FuncEA, EDGE_FALL_THROUGH)

 , function(FuncEA)

 , !basic_block(_, EA).

inter_function_padding(EA)

 : raw_transfer(EA, SecStartEA, EDGE_FALL_THROUGH)

 , section(SecStartEA, _)

 , !basic_block(_, EA).

inter_function_padding(EA)

 : raw_transfer(EA, SecEndEA, EDGE_FALL_THROUGH)

 , section(_, SecEndEA)

 , !basic_block(_, EA).

; Inductive case for inter-function padding: An instruction that

; falls through to function padding, where that instruction isn't

; part of any basic blocks, is also considered to be padding.

inter_function_padding(EA)

 : raw_transfer(EA, PaddingEA, EDGE_FALL_THROUGH)

 , inter_function_padding(PaddingEA)

 , !basic_block(_, EA).

Listing 7: An example Dr. Disassembler export that updates the database with all the instruction addresses

that serve as “padding” between functions

Future Work and Extensions

Our immediate plan is to extend Dr. Disassembler to a fully C++ implementation. Along with

improving the performance of the tool, we expect that this transition will open many new doors

for research on binary analysis:

● Streamlined binary analysis platforms: Contemporary binary analysis platforms have

rich interfaces for developing custom analysis plugins, but the sheer complexity of their

APIs frequently leaves users bottlenecked by steep learning curves. As a next step, we

want to develop Dr. Disassembler into a full-fledged binary analysis platform, complete

with all the features needed to facilitate the easy creation and customization of user

plugins.

● GUI interfaces for binary analysis and transformation: By using Dr. Disassembler’s

mutable representation of disassembly, we can develop new interfaces that enable real-

time analysis and editing of binary executables (e.g., to help developers visualize how

toggling on different heuristics affects analysis results). Our end goal here is something

akin to Compiler Explorer… for binaries!

● Exposing analysis blind spots: Our prototype of Dr. Disassembler is designed to use

the outputs of multiple binary parsers and instruction decoders. Going forward, we would

like to use Dr. Disassembler as a platform for developing automated techniques to

identify where these competing tools agree and disagree with one another (e.g., on

code-data disambiguation, branch target analysis, etc.) and pinpoint their weaknesses.

If any of these ideas interest you, feel free to get in touch with either me (Stefan Nagy) or Peter

Goodman at Trail of Bits.

We’ll release our prototype Python implementation of Dr. Disassembler and provide a

PDF version of this post here. Happy disassembling!

https://github.com/lifting-bits/dds

	Toward a Best-of-Both-Worlds Binary Disassembler
	Introduction
	Background: Disassembly, Datalog, and Dr. Lojekyll
	Introducing Dr. Disassembler
	Disassembly Procedure
	Recovering Control Flow
	Post-Processing

	Example Exports and Queries
	Query: Grouping Instructions into Functions
	Export: Instructions Dominating Invalid Instructions
	Export: Inter-Function Padding

	Future Work and Extensions

