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This past winter, I was fortunate to have the opportunity to work for Trail of Bits as a graduate 

student intern under the supervision of Peter Goodman and Artem Dinaburg. During my 

internship, I developed Dr. Disassembler, a Datalog-driven framework for transparent and 

mutable binary disassembly. Though this project is ongoing, this blog post introduces the high-

level vision behind Dr. Disassembler’s design and discusses the key implementation decisions 

central to our current prototype. 

Introduction 

Binary disassembly is surprisingly difficult. Many disassembly tasks (e.g., code/data 

disambiguation and function boundary detection) are undecidable and require meticulous 

heuristics and algorithms to cover the wide range of real-world binary semantics. An ideal 

disassembler has two key properties: (1) transparency, meaning that its underlying logic is 

accessible and interpretable, and (2) mutability, meaning that it permits ad hoc interaction and 

refinement. Unfortunately, despite the abundance of disassembly tools available today, none 

have both transparency and mutability. Most off-the-shelf disassemblers (e.g., objdump, 

Dyninst, McSema, and Angr) perform “run-and-done” disassembly, and while their underlying 

heuristics and algorithms are indeed open source, even the slightest of changes (e.g., toggling 

on a heuristic) requires a complete rebuild of the tool and regeneration of the disassembly. In 

contrast, popular commercial disassemblers like IDA Pro and Binary Ninja provide rich 

interfaces for user-written plugins, yet these tools are almost entirely proprietary, making it 

impossible to fully vet where their core heuristics and algorithms fall short. Thus, reverse 

engineers are left to choose between two classes of disassemblers: those full of ambiguity or 

those with zero flexibility.  

 

In this blog post, I introduce our vision for a best-of-both-worlds (transparent and mutable) 

platform for binary disassembly. Our approach was inspired by recent disassembly tools like 

ddisasm and d3re, which use the Soufflé Datalog engine. Dr. Disassembler uses Trail of Bits’ in-

house incremental and differential Datalog engine, Dr. Lojekyll, to specify the disassembly 

process. Below, I describe how Dr. Disassembler’s relational view of disassembly is a step 

toward transparent, mutable disassembly—streamlining the integration of new heuristics, 

algorithms, and retroactive updates—without the need to perform de novo disassembly per 

every incremental update. 

 

https://www.usenix.org/system/files/sec20-flores-montoya.pdf
https://bar2021.moyix.net/bar2021-preprint16.pdf
https://souffle-lang.github.io/


Background: Disassembly, Datalog, and Dr. Lojekyll 

Disassembly is the process of translating a binary executable from machine code into a 

human-interpretable, assembly language representation of the program. In software security, 

disassembly forms the backbone of many critical tasks such as binary analysis, static rewriting, 

and reverse engineering. At Trail of Bits, disassembly is the crucial first step in our executable-

to-LLVM lifting efforts, such as Remill and McSema. 

 

At a high level, a disassembler begins by first parsing a binary’s logical sections to pinpoint 

those that contain executable code. From there, instruction decoding translates machine code 

into higher-level instruction semantics. This procedure uses one of two strategies: linear sweep 

or recursive descent. 

 

Linear sweep disassemblers (e.g., objdump) perform instruction decoding on every possible 

byte, beginning at the very first byte index. However, on variable-length instruction set 

architectures like x86, a linear sweep disassembler that naively treats all bytes as instructions 

could perform instruction decoding on non-instruction bytes (e.g., inlined jump tables). To 

overcome this issue, many modern disassemblers improve their analyses by recovering 

metadata (e.g., debugging information) or applying data-driven heuristics (e.g., function entry 

patterns).  

 

On the other hand, recursive descent disassemblers (e.g., IDA Pro) follow the observed control 

flow to selectively re-initiate linear sweep only on recovered branch target addresses. While 

recovering the target addresses of jump tables is generally sound, recovering the targets for 

indirect calls is a far more challenging problem, in which common-case soundness has yet to 

emerge. 

 

Datalog is one of the more popular members in a class of programming languages known as 

logical programming. Compared to imperative programming languages (e.g., Python, Java, C, 

and C++), which are structured around a program’s control flow and state, logical programming 

(e.g., Prolog and Datalog) is structured solely around logical statements. In our use case of 

binary disassembly, a logical statement can be useful for capturing the addresses in a binary 

that correspond to plausible function entry points: (1) targets of direct call instructions, (2) 

common function prologues, or (3) any function address contained in the symbol table. This use 

case is shown below in Dr. Lojekyll syntax:  

 

#query plausible_function(free u64 FuncEA): 

    ; Clause 1: targets of direct calls. 

    transfer(FromAddr=_, ToAddr=FuncEA, TransferType=CALL_DIRECT).  

 

    ; Clause 2: a common function prologue (push rbp, mov rbp rsp). 

    instruction(Addr=FuncEA, Type=PUSH, Op1=RBP, Op2=None), 

    instruction(Addr=FuncEA+1, Type=MOV, Op1=RBP, Op2=RSP). 

 

    ; Clause 3: any recovered function symbol. 

    symbol(Addr=FuncEA, SymbolType=Function). 

https://en.wikipedia.org/wiki/Branch_table


Listing 1: This query retrieves the set of all plausible function entry points. Here, “free” denotes that the 

query must find all candidates that match the subsequent clauses. In a bounded clause (e.g., given some 

fixed address), the tag “bound” is used instead (see listing 5). 

 

From a logical programming perspective, the code snippet above is interpreted as follows: there 

is a plausible function at address FuncEA if a direct call to FuncEA, a known function entry 

instruction sequence starting at FuncEA, or a function symbol at FuncEA exists. 

 

At a higher level, logical and functional programming are part of a broader paradigm known as 

declarative programming. Unlike imperative languages (e.g., Python, Java, C, and C++), 

declarative languages dictate only what the output result should look like. For instance, in the 

previous example of retrieving function entry points, our main focus is the end result—the set of 

function entry points—and not the step-by-step computation needed to get there. While there is 

certainly more to logical and declarative programming than the condensed explanation offered 

here, the key advantage of logical programming is its succinct representation of data as 

statements.  

 

Here’s where Datalog shines. Suppose that after populating our database of “facts”—sections, 

functions, and instructions—we want to make some adjustments. For example, imagine we’re 

analyzing a position-independent “hello world” binary with the following disassembly obtained 

for function <main>:   

 

 523: 89 04 24              mov   %eax,(%esp) 

 526: e8 fc ff ff ff        call  527 <main+0x17> 

 52b: 31 c9                 xor   %ecx,%ecx 

Listing 2: An example of a relocated call target 

 

We also know that the following relocation entries exist: 

 

$ readelf -r helloworld.elf.x86_32.pie 

 

Relocation section '.rel.dyn' at offset 0x308 contains 10 entries: 

 Offset     Info    Type            Sym.Value  Sym. Name 

00000527  00000202 R_386_PC32        00000000   printf@GLIBC_2.0 

 

Relocation section '.rel.plt' at offset 0x358 contains 2 entries: 

 Offset     Info    Type            Sym.Value  Sym. Name 

0000200c  00000207 R_386_JUMP_SLOT   00000000   printf@GLIBC_2.0 

Listing 3: Relocation entry information for the example in listing 2 

 

At runtime, the dynamic linker will update the operand of the call at 0x526 to point to 

printf@PLT. When the call is taken, printf@PLT then transfers to printf’s Global Offset 

Table (GOT) entry, and the execution proceeds to the external printf.  

 

If you’re familiar with IDA Pro or Binary Ninja, you’ll recognize that both tools adjust the 

relocated calls to point to the external symbols themselves. In the context of binary analysis, this 



is useful because it “fixes up” the otherwise opaque calls whose targets are revealed only 

through dynamic linking. In Datalog, we can simply accommodate this with a few lines: 

 

#export indirect_call_to_external(u64 CallEA, u64 ExternEA) 

    : instruction(Address=CallEA, Type=CALL_INDIRECT, Op1=AddrOfTargetEA, _) 

    , relocation(Address=AddrOfTargetEA, ExternalAddress=ExternEA) 

    , instruction(Address=ExternEA, _, _, _). 

Listing 4: This exported message rewrites the call to skip its intermediary Procedure Linkage Table (PLT) 

entry. Here, “#export” denotes that the message will alter some fact(s) in the Datalog database. 

 

Voila! Our representation of the indirect call no longer requires the intermediary redirection 

through the PLT. As a bonus, we can maintain a relationship table to map every call of this type 

to its targets. With this example in mind, we envision many possibilities in which complex binary 

semantics are modelable through relationship tables (e.g., points-to analysis, branch target 

analysis, etc.) to make binary analysis more streamlined and human-interpretable. 

 

Dr. Lojekyll is Trail of Bits’ new Datalog compiler and execution engine and the foundation on 

which Dr. Disassembler is built. It adopts a publish/subscribe model, in which Dr. Lojekyll-

compiled programs “subscribe” to messages (e.g., there exists an instruction at address X). 

When messages are received, the program may then introduce new messages (e.g., there 

exists a fall-through branch between instructions A and B) or remove previous ones. Compiled 

programs may also publish messages to external parties (e.g., an independent server), which 

may then “query” data relationships from the Datalog side.  

 

Dr. Lojekyll’s publish/subscribe model is well suited for tasks in which “undo”-like features are 

required. In binary disassembly, this opens up many possibilities in human-in-the-loop binary 

analysis and alterations (think Compiler Explorer but for binaries). At the time of writing, Dr. 

Lojekyll supports the compilation of Datalog into Python programs and has emerging support for 

C++. 

 

Introducing Dr. Disassembler 

Conventional “run-and-done” disassemblers perform their analyses on the fly, confining them to 

whatever results—even erroneous ones—are obtained from the outset. Instead, Datalog 

enables us to move all analysis to post-disassembly, thus streamlining the integration of plug-

and-play refinements and retroactive updates. And with its painless syntax, Datalog easily 

represents one of the most powerful and expressive platforms for user-written disassembly 

plugins and extensions. We implement our vision of transparent and mutable disassembly as a 

prototype tool, Dr. Disassembler. While Dr. Disassembler can theoretically use any Datalog 

engine (e.g., DDLog), we currently use Trail of Bits’ own Dr. Lojekyll. The implementation of Dr. 

Disassembler discussed in this blog post uses Dr. Lojekyll’s Python API. However, at the time of 

writing, we have since begun developing a C++-based implementation due to Python’s many 



performance limitations. Here, I introduce the high-level design behind our initial (and 

forthcoming) implementations of Dr. Disassembler. 

 

 
Figure 1: Dr. Disassembler’s high-level architecture 

 

Disassembly Procedure  

Dr. Disassembler’s disassembly workflow consists of three components: (1) parsing, (2) 

decoding, and (3) post-processing. In parsing, we scan the binary’s sections to pinpoint those 

that contain instructions, along with any recoverable metadata (e.g., entry points, symbols, and 

imported/exported/local functions). For every identified code section, we begin decoding its 

bytes as instructions. Our instruction decoding process maps each instruction to two key fields: 

its type (e.g., call, jump, return, and everything else) and its outgoing edges.  

 

Recovering Control Flow  

An advantage of using Datalog is the ability to express complex program semantics as a series 

of simple, recursive relationships. Yet, when handling control flow, a purely recursive approach 

often breaks certain analyses like function boundary detection: recursive analysis will follow the 

control flow to each instruction’s targets and resume the analysis from there. But, unlike calls, 

jumps are not “returning” instructions; so for inter-procedural jumps, the function will not be re-

entered, thus causing the disassembler to miss the remaining instructions in the function 

containing the jump instruction. 

 

To unify recursive and linear descent disassembly approaches, we developed the concept of 

non-control-flow successor instructions: for any unconditionally transferring jump or return 

instruction, we record an artificial fall-through edge from the instruction to the next sequential 

instruction. Though this edge has no bearing on the actual program, it effectively encodes the 

logical “next” instruction, thus unifying our linear and recursive analyses. These non-control-flow 

successor edges are the linchpin of our recursive analyses, like instruction-grouping and 

function boundary detection.  

 



Post-Processing  

At each step of parsing and decoding, we publish any interesting objects that we’ve found to our 

Dr. Lojekyll database. These core objects—symbols, sections, functions, instructions, and 

transfers—form the building blocks of our heuristic and recursive analyses. Our fundamental 

approach behind Dr. Disassembler is to “engulf” as much disassembly information as possible, 

regardless of correctness, and to refine everything afterward on the Datalog side. Because we 

consider every piece of information to be plausibly correct, we can retroactively update our 

disassembly when any new information is observed; and unlike conventional run-and-done 

tools, this does not require a de novo re-disassembly. 

Example Exports and Queries 

Dr. Disassembler streamlines binary analysis by focusing on disassembly artifacts themselves 

rather than the myriad steps needed to obtain them. To showcase some of Dr. Disassembler’s 

many capabilities, this section highlights several implementation examples of rigorous binary 

analysis tasks facilitated by two of Dr. Disassembler’s fundamental constructs: “exports” 

(messages that change/remove facts) and “queries” (which retrieve information about facts).  

Query: Grouping Instructions into Functions 

Given an arbitrary function address FuncEA, this query returns all the addresses of the 

instructions contained in that function. Two messages form this query: (1) function(u64 

StartEA) and (2) instruction(u64 InsnEA, type Type, bytes Bytes).  

 

#query function_instruction(bound u64 FuncEA, free u64 InsnEA). 

 

; Clause 1: The first instruction of a function is always a member of 

; that function.  

function_instruction(FuncEA, FuncEA) 

    : function(FuncEA) 

    , instruction(FuncEA, _, _). 

 

; Clause 2: If there is flow between two instructions in a function,  

; then that flow’s destination instruction is also in the function. 

function_instruction(FuncEA, NextEA) 

    : function_instruction(FuncEA, InsnEA) 

    , intraprocdural_transfer(InsnEA, NextEA). 

Listing 5: An example Dr. Disassembler query that returns the addresses of the instructions contained in a 

function 

 

Export: Instructions Dominating Invalid Instructions 

This export returns all the instructions whose control flow leads to invalid instructions (i.e., 

where instruction decoding fails). This heuristic is critical for Dr. Disassembler to filter-out the 



many “junk” instruction sequences that inevitably occur when decoding every possible byte 

sequence. 

 

As in the previous example, we structure this relationship around two core messages: (1) 

instruction and (2) raw_transfer(u64 StartEA, u64 DestEA), the latter of which 

contains the unaltered control flow recovered from the binary (i.e., no alterations like the one in 

listing 4 are made yet).  

 

#export dominates_invalid_instruction(u64 EA). 

 

; Clause 1: Fall-throughs to non-decodable instructions. 

; Any transfer to a non-instruction at `EA` marks `EA`  

; as dominating an invalid instruction. 

dominates_invalid_instruction(EA) 

    : raw_transfer(_, EA, _) 

    , !instruction(EA, _, _). 

 

; Clause 2: Recursive case for fall-throughs. 

dominates_invalid_instruction(EA) 

    : instruction(EA, INSN_NORMAL, _) 

    , raw_transfer(EA, FallThroughEA, EDGE_FALL_THROUGH) 

    , dominates_invalid_instruction(FallThroughEA). 

 

; Clause 3: Recursive case for direct jumps. 

dominates_invalid_instruction(EA) 

    : instruction(EA, INSN_DIRECT_JUMP, _) 

    , raw_transfer(EA, JmpTargetEA, EDGE_JUMP_TAKEN) 

    , dominates_invalid_instruction(JmpTargetEA). 

 

; Clause 4: Recursive case for conditional direct jumps. 

dominates_invalid_instruction(EA) 

    : instruction(EA, INSN_COND_DIRECT_JUMP, _) 

    , raw_transfer(EA, TakenEA, EDGE_JUMP_TAKEN) 

    , raw_transfer(EA, NotTakenEA, EDGE_JUMP_NOT_TAKEN) 

    , dominates_invalid_instruction(TakenEA) 

    , dominates_invalid_instruction(NotTakenEA). 

 

; Clause 5: Recursive case for direct calls. 

dominates_invalid_instruction(EA) 

    : instruction(EA, INSN_DIRECT_CALL, _) 

    , raw_transfer(EA, CalleeEA, EDGE_FUNCTION_CALL) 

    , dominates_invalid_instruction(CalleeEA). 

Listing 6: An example Dr. Disassembler export that updates the database with all the instructions whose 

control flow leads to invalid instructions 

 



Export: Inter-Function Padding 

This export returns all the instruction addresses that serve as “padding” between functions (e.g., 

NOPs that do not belong to any function). Here, we use the following messages: (1) function,  

(2) section, (3) raw_transfer, and (4) basic_block(u64 BlockEA, u64 InsnEA). 

Identifying inter-function padding is a crucial step to refining our function-instruction grouping. 

 

#export inter_function_padding(EA). 

 

; Base case for inter-function padding: An instruction that falls  

; through to the beginning of a function, the beginning of a section,  

; or the ending of a section, and that doesn't itself belong to any  

; known basic block is treated as padding. 

inter_function_padding(EA) 

    : raw_transfer(EA, FuncEA, EDGE_FALL_THROUGH) 

    , function(FuncEA) 

    , !basic_block(_, EA). 

 

inter_function_padding(EA) 

    : raw_transfer(EA, SecStartEA, EDGE_FALL_THROUGH) 

    , section(SecStartEA, _) 

    , !basic_block(_, EA). 

 

inter_function_padding(EA) 

    : raw_transfer(EA, SecEndEA, EDGE_FALL_THROUGH) 

    , section(_, SecEndEA) 

    , !basic_block(_, EA). 

 

; Inductive case for inter-function padding: An instruction that  

; falls through to function  padding, where that instruction isn't  

; part of any basic blocks, is also considered to be padding. 

inter_function_padding(EA) 

    : raw_transfer(EA, PaddingEA, EDGE_FALL_THROUGH) 

    , inter_function_padding(PaddingEA) 

    , !basic_block(_, EA). 

Listing 7: An example Dr. Disassembler export that updates the database with all the instruction addresses 

that serve as “padding” between functions 

 

Future Work and Extensions 

Our immediate plan is to extend Dr. Disassembler to a fully C++ implementation. Along with 

improving the performance of the tool, we expect that this transition will open many new doors 

for research on binary analysis: 

 

● Streamlined binary analysis platforms: Contemporary binary analysis platforms have 

rich interfaces for developing custom analysis plugins, but the sheer complexity of their 

APIs frequently leaves users bottlenecked by steep learning curves. As a next step, we 



want to develop Dr. Disassembler into a full-fledged binary analysis platform, complete 

with all the features needed to facilitate the easy creation and customization of user 

plugins.  

● GUI interfaces for binary analysis and transformation: By using Dr. Disassembler’s 

mutable representation of disassembly, we can develop new interfaces that enable real-

time analysis and editing of binary executables (e.g., to help developers visualize how 

toggling on different heuristics affects analysis results). Our end goal here is something 

akin to Compiler Explorer… for binaries! 

● Exposing analysis blind spots: Our prototype of Dr. Disassembler is designed to use 

the outputs of multiple binary parsers and instruction decoders. Going forward, we would 

like to use Dr. Disassembler as a platform for developing automated techniques to 

identify where these competing tools agree and disagree with one another (e.g., on 

code-data disambiguation, branch target analysis, etc.) and pinpoint their weaknesses. 

 

If any of these ideas interest you, feel free to get in touch with either me (Stefan Nagy) or Peter 

Goodman at Trail of Bits.  

 

We’ll release our prototype Python implementation of Dr. Disassembler and provide a 

PDF version of this post here. Happy disassembling!  

 

https://github.com/lifting-bits/dds
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